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Nonlinear adjustment of a thin annular film 
of viscous fluid surrounding a thread of another 

within a circular cylindrical pipe 
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A nonlinear analysis, based on lubrication theory, is presented for the adjustment 
under surface tension of an initially uniform annular film of viscous fluid confined 
within a circular cylindrical pipe. The film surrounds a thread of another viscous fluid. 
Small axisymmetric interfacial disturbances of sufficiently long wavelength are found 
to grow, leading to the break-up of the initially continuous outer film into a number 
of isolated rings of fixed length on the pipe wall. The implications for the rupture 
of fluid threads surrounded by moderately thin films in confined geometries are 
discussed. 

1. Introduction 
When one fluid displaces another in a capillary tube, a thin film of the fluid initially 

present is often left behind on the tube walls (Taylor 1961). The details of this process 
depend on both the non-dimensional flow rate and the wetting properties of the two 
fluids and the pipe wall. Similar processes are thought to occur when oil and water 
displace one another in the pores and throats which constitute the flow channels in 
a porous rock. 

The existence of such films has important consequences for later fluid transport 
and our modelling of it. Current microscopic models of two-phase flow in porous 
media, using the ideas of percolation theory, stress the importance of the connectivity 
of the fluid phases in determining the subsequent flow properties (for contrasting 
viewpoints see Larson, Scriven & Davis 1981 ; Koplik, Wilkinson & Willemsen 1983). 
Surface films can increase this connectivity, making available extra paths along which 
fluid rearrangements can take place. 

Direct visualization of two-phase flows in realistic porous media is very difficult 
and the interpretation of measurements contentious. For example, there is little 
agreement on the wetting properties of rocks under reservoir conditions, or indeed 
on whether such quantities are well defined. Because of these observational difficulties, 
theoretical predictions based on well-understood physical processes are particularly 
valuable. 

The main aim of this paper is to show that the time evolution of such systems can 
be successfully analysed using comparatively simple fluid mechanics. A second aim 
is a better understanding of the mechanisms of rearrangement and the equilibrium 
distributions of two phases within individual pores and throats of a porous medium. 
Most previous authors have analysed this problem using thermodynamic ideas 

f Present address: Schlumberger Cambridge Research, P.O. Box 153, Cambridge CB2 3BE, 
England. 
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(Everett & Haynes 1972; Mohanty 1981). While such work is useful, it is essentially 
static and gives no information about time-dependent processes. Later we shall see 
that an understanding of these is important in deciding the accessibility of 
thermodynamically stable steady states. 

While unconfined fluid threads have long been known to break up into spheres (e.g. 
Rayleigh 1892 ; Taylor 1934), little previous work has been done on the surface-tension 
instabilities of cylindrical films and threads when wall effects are important. Everett 
& Haynes (1972) have calculated the equilibrium shapes, and Goren (1962) and 
Hickox (197 1) have performed linear stability analyses. Hickox's calculation was 
directed at an understanding of finite-Reynolds-number effects in coaxial flow and 
was restricted to the long-wavelength limit. He found that disturbances grow 
increasingly rapidly as their wavelength becomes shorter. Goren studied the stability 
of an annular film supported on a wire or on the inner wall of a pipe in vacuo. He 
considered arbitrary wavelengths and proved the existence of a fastest-growing 
disturbance with finite wavelength, showing that sufficiently short wavelengths decay 
because of the stabilizing effect of the longitudinal component of mean curvature. 

In the nonlinear thin-film theory to be presented here the competition between the 
destabilizing effect of transverse curvaturet at long wavelengths and the stabilizing 
effect of longitudinal curvature at  short wavelengths again leads to the growth of 
disturbances with a finite axial lengthscale. The outer film eventually breaks up into 
a number of disconnected lobes. There is no simple relationship between the initial 
disturbance and the spacing and height of these final steady lobes. However, the axial 
extent of each lobe is fixed to be 2 x ~ ( p i p e  radius), independent of the initial 
conditions, by the requirement that it be an equilibrium, constant-pressure shape (see 
ss4.1 and 4.3). It is also argued there that the spacing between adjacent lobes is no 
more than 2n x (pipe radius). Using these observations, the maximum height of a lobe 
can be estimated from volume conservation. 

2. Preliminary considerations 
2.1. Geometry and non-dimensional groups 

We consider an infinitely long cylindrical fluid thread of undisturbed radius b and 
viscosity Ap, surrounded by fluid of viscosity ,u and situated concentrically in a 
circular pipe of radius a. Figure 1 shows the geometry in question. Gravitational 
effects are neglected, and it is assumed that no other body forces or pressure gradients 
are applied to the system so that the only driving force is due to surface tension y 
acting at  the interface S(t)  between the two fluids. 

Although the systems that we want to model are very small$ it is not immediately 
clear that inertia and buoyancy forces can be neglected. Taking A = O( 1) and forming 
a Reynolds number for flow in the core thread using the pipe radius a as lengthscale 
and y / p  as velocity, we obtain R = pay/p2, which is O( lo3) for the parameter values 
given. The Bond number 8 = Apga2/y, measuring the relative importance of gravity 
over surface tension, is then 0(10+). 

As we shall see in 3.1, the small driving pressure gradient and the high resistance 
to flow when the outer annular film is thin make all velocities much smaller than 
O(y/,u). They are in fact O((h/a)3y /p) ,  where h is a typical film thickness. For 

t Transverse curvature corresponds to the ( . ) E l - -  (( ) RB/R))R-' terms in (2.12), longitudinal 

$: Typically for oil-water-sandstone systems a = 0(10-2) cm, ,u = 0(10-') g cm-ls-', A = 0(1), 
curvature to - (( ) R&. 

y = O(20) dyn em-' and p ,  Ap = O( 1) g cmP3. 
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FIGURE 1. Defining sketch for basic thread geometry. 

h/a = 0(10d2), R = O(IOF3), and inertia effects in the core are negligible. In the film, 
the effective Reynolds number is still smaller by virtue of the slowly varying 
geometry. 

The Bond number estimated above is small, so we might expect that gravitational 
effects could be neglected. This idea must be examined carefully though. B Q 1 
certainly ensures that in a horizontal tube gravity does not appreciably change the 
cross-sectional shape of the core thread from a circle. At the same time though, the 
core, if less dense than the film, will tend to rise towards the upper wall of the pipe. 
Provided that rate of rise is small compared with the rate of surface-tension-driven 
adjustments, the neglect of gravity is justified. In 53.1 we shall argue that the 
pressure variations over a distance O(a) due to surface tension acting at a distorted 
interface are O( @/a) (?/a). Over the same distance gravitational pressure variations 
are O(Apga). The ratio of these two is O((h/a)-'Apga2/y), and provided that this 
quantity is small then buoyancy-driven flows are weak compared with those driven 
by surface tension. We require 5 << O(h/a) ,  which for the quoted parameter values 
leads to the restriction h/a % O(10-2). This is only just compatible with the require- 
ment that the outer film be thin, but for smaller pipe radii, e.g. a = 0(10-3 cm), 
which is not untypical of the radii of the smaller pores in a sandstone, 5 = O( low4). 
Gravity may then be neglected if h/a % O(10-4); in practice, hardly a severe 
constraint. 

2.2. Governing equations 
We write the fluid pressure and velocity as p ,  u in the outer fluid film and P ,  U in 
the core, and use cylindrical coordinates ( r ,  z, q5) with associated velocity components 
(u, w,  w) in the film and (U, W ,  V )  in the core. The interface #(t )  is given by 

(2.1) r = R(z,q5,t) = a-h(z ,# , t ) ,  

and the governing equations and boundary conditions to be satisfied in any time 
evolution of the system as as follows: 

v.u=o,  (2.2) 

ApVW = V P  

v * u  = 0, 
in the core, R > r 2 0, and 

pv2u = vp (2.5) 
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in the film, a > r > R.  We require no slip at  the pipe wall, 

continuity of velocity at the interface, 

u = U  at r = R ,  

and continuity of tangential stress there with the normal component jumping by an 
amount given by Laplace's formula, 

a-n-Z-n = yKn at r = R. (2.8) 

The stress tensors are given by 
Q = -p /+p(Vu+VuT)  

and z = -P/+hp(VU+VLIT), 

and the outward normal to the core is 

3 - R , f - A $  , " >  R 

(2.9) 

(2.10) 

(2.1 1)  

where subscripts denote differentiation and P, L and 3 are unit vectors in the r- ,  z- 
and $-directions. The mean curvature K is then 

(2.12) 

(2.13) 

The Stokes equations (2.2)-(2.5) and boundary conditions (2.6)-(2.8) are instanta- 
neous in that the velocity and stress fields at  some time t depend only on the current 
position of the interface. A simple equation for the evolution of an interface described 
by (2.1) can be found in terms of the instantaneous flow field as follows. The kinematic 
requirement of no flux of fluid through the interface may be written 

u*Vh at s(t), (2.14)  
Dh 
Dt 

~ = - - = - h -  

which may be recast as 

(2.15) 
h 

a - h  

By (2.7), u could be replaced by Uin the above, but it is most convenient in the sequel 
to work with the film velocity. Mass conservation for the annular wedge of outer (film) 
fluid between z and z + dz and $ and $ + dr$ requires 

h, = -u-wh,-v--@- = -u.n a t  S( t ) .  

u.dS = 0, s surface of wedge 
(2.16) 

which relates u'n at #( t )  to the volume flux in the film. Equation (2.15) can then be 
written as 

where 

(2.17) 

(2.18) 

(2.19) 
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Hence the time evolution of the interface is completely determined if we can find 
the film axial and azimut~al v~loc~t ies  w, 21. This problem is addressed in $3, but first 
we summarize the results of a linearized stability analysis o f  (2.2)-(2.8), reported in 
more detail in ~ a m m o n d  (1982). 

2.3, Linear stabitity analysis 

The time evolution of small interface disturbances of the form 

R = b( 1 +peat+ikz 1 9  (2.20) 

with IpI Q 1 and 0 < k < 00, is most easily found using the kinematic boundary 
condition (2.14) directly rather than in the integral form (2.17). Linearization about 
a basic state of rest and use of the general soIution for Stokes flow in cylindrical 
geometry given by Happel & Brenner (1965, p. 77) eventually yields an unwieldy 
expression for F = (bp/y)  a as a function of kb, a/b and A. From this can be retrieved, 
as limiting cases, the results of Rayleigh (1892) for a thread in vacuo and of Tomotika 
(1935) for an inviscid thread in unbounded viscous fluid. In both cases the fastest- 
growing mode has infinite wavelength. 

To interpret the behaviour of F(kb, alb, A )  further we examine the interface 
curvature, which, through surface tension, supplies the only driving force for the flow. 
Let us for a moment consider non-axisymmetric perturbations, including a term 
eim$, m = 0,1,2, ..., in (2.20). Substitution of this augmented form of (2.20) in (2.12) 
and linearization gives 

1 
K = --(I +p((kb)2+m2-1)eat+i(”+m$) 1. (2.21) 

Writing N = (kb)2+m2- 1, it is easy to see that the normal stress jump across the 
interface required by (2.8) sets up a flow which reduces the size of the disturbance 
if N > 0 and increases it if N < 0. For m > 1, N is always positive, while for rn = 1 
it is zero when kb = 0 and positive elsewhere. Within this linearized analysis then, 
non-axisymmetric perturbations are stable and hence uninteresting (the neutrally 
stable case kb = 0, m = 1 corresponds to uniform displacement of the thread from 
the tube centreline without change of shape). Although there is no guarantee that 
this conclusion will be true for finite-amplitude disturbances, for simplicity from here 
on we will neglect all non-axisymmetric effects, setting v, V and a/a+ = 0. There is 
no difficulty in principle in extending the nonlinear theory below to include 
non-axisymmetric disturbances, but the computational effort increases enormously. 

As (kb(+ 00, N +  00, indicating that short waves are stable. Such disturbances 
appear locally as wrinkling on an almost flat surface which can only increase its area. 
On thermodynamic grounds such disturbances decay. It is possible, however, for 
sufficiently long waves to decrease the thread’s area, as was shown by Rayleigh (1892) 
and Tomotika (1935). There is no analogous instability of unbounded plane interfaces, 
because their area can only be increased by small perturbations. The destabilizing 
influence of the ( ) R-’ term in (2.12) is absent. 

Numerical evaluation of F(kb, alb, A )  confirms both the above observations and the 
conclusions of Goren (1962) and Tomotika (1935) that the effect of boundaries or of 
finite viscosity ratio is to make the wavelength of the fastest-growing mode finite. 

An interesting and original set of limits can be found by taking (a-b) /b  Q 1 so 
that the outer film is thin. Setting 

a = b ( l + q )  with 0 -= 1/31 << T,I << 1 (2 .22 )  
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FIQURE 2. Log,, ( iw-3 x maximum growth rate from linear theory) plotted against log,, (?A) for 
various values of 7. Notice the two flat regions which appear on each graph when 7 < 0.1, showing 
that the growth rate is then independent of the viscosity ratio A. These regions correspond to, and 
are in good numerical agreement with, the thin-film limits (2.23) and (2.24). The dashed line has 
slope -1. All the graphs become parallel to i t  aa 7 A  --f co, showing that then it is the core flow alone 
which controls the growth rate of small disturbances. 

and expanding F, we obtain to leading order 

(2.23) 

F - -  " (kb)2(1-(kb)2)  when 7-1 + A  < 99-3 (2.24) 
12 

and (2.25) 

Equation (2 .25)  is identical with the (non-dimensional) growth rate found by 
Rayleigh for a thread in vacua, indicating that for sufficiently large core viscosities 
the hydrodynamics of the thin outer film are not important in determining the rate 
of growth of interface disturbances. Equations (2.23) and (2.24) exhibit a strong 
dependence on the (non-dimensional) film thickness, which suggests that the dynamics 
of the outer fluid become important as 7 or h decrease. Indeed (2 .23)  can be obtained 
in the thin-film limit (2.22) from Goren's growth-rate relation for a wall-supported 
annular thread in vacua, indicating that the dynamics of the core fluid play no part 
in determining the growth rate of interfacial disturbances when the outer film is 
sufficiently thin or the core sufficiently mobile. We shall examine the film-region 
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dynamics in $3, and an explanation for the appearance of the q3 factor in (2.23) will 
be given. 

In  both (2.23) and (2.24) the fastest-growing modes have finite wavelength 2hb, 
which is comparable to the pipe diameter; in (2.25) the fastest-growing wavelength 
is infinite. Figure 2 shows the logarithm of the growth rate of the fastest-growing mode 
plotted against log,, q A  for various non-dimensional film thicknesses q. The three 
regimes described above are clearly visible. 

3. Nonlinear thin-film analysis 
Linear stability analysis has shown that, for thin outer fluid films and all except 

the largest values of A,  the fastest-growing interface perturbations have wavelength 
comparable to the pipe radius a. This suggests that when investigating their growth 
to an amplitude comparable to the undisturbed film thickness we should write the 
film thickness h(z, t )  as in (2.1) with h/a 4 1 ,  allow changes in h to be as large as its 
undisturbed value, and take a 8/82 = O( 1) .  The film radial lengthscale is then much 
smaller than the axial lengthscale, and this makes a number of simplifying approx- 
imations possible. In  the core axial and radial lengthscales are comparable and O(a),  
and so the dynamical equations cannot be approximated there. 

3.1. Orders of magnitude 

First consider the core fluid to be an inviscid incompressible fluid, i.e. A = 0. Under 
the assumption of slow flow, the core pressure P is constant, and by suitable choice 
of reference pressure we may set P = 0. Surface tension acting a t  the interface causes 
there to be a jump in normal stress across it proportional to  the local mean curvature 
K .  Because the core is inviscid it cannot support any non-uniform stresses, and using 
P = 0 we see that I: = 0 everywhere. Then from (2.8) 

unn = YK onS(t). (3.1) 

rat = 0 on S(t) .  (3.2) 

Continuity of tangential stress requires 

With s(t) given by (2.1), expanding (2.12) for Ih/al, lh,l and )ahzZI 4 1, we obtain 

K = - 1 - -(- 1 h  +ah,,) + ~ ( ‘ $ , ~ , h , , h : )  
a a a  (3.3) 

In  addition to this geometrical approximation, the small rate of change of film 
thickness with z and the thinness of the film allow us to use plane two-dimensional 
lubrication theory to describe the flow there. The pressure is constant across the film 
and in the normal stress boundary condition the dominant balance is between 
pressure and surface tension, the viscous normal stresses being smaller by O ( ~ / U ) ~ .  
From (3.1) the pressure variation along the film is 

(3.4) 

Using (3.3), we see that in the film there is a uniform pressure - y / a  about which 
variations in the core radius cause small O((h/a)  y / a )  pressure perturbations. The 
associated flows cause adjustments of the interface on a timescale given by 

p ( r ,  2 ,  t )  = p(z ,  t )  = - Y K ( Z ,  t ) .  

(3.5) 
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using the standard estimates obtained from the film axial-momentum and mass- 
conservation equations 

w = or+), u = O ( k w ) ,  

and, from (3.3) and (3.4), (3.7) 

This very long adjustment time is a consequence of the small driving pressure 
gradient and the large resistance to viscous flow in narrow channels. 

Now consider the core fluid to have finite viscosity. For h not too large the basic 
flow in the film should be much as described above, driven by a small but significant 
pressure gradient there. Via the interfacial velocity and stress continuity conditions 
it will set up a flow in the core, which couples back to the film, changing the basic 
velocity and pressure fields there. These disturbances are small provided that 

A(;) 4 1 ,  

as we shall now show. 
In the case h = 0, the lubrication theory solution for the film axial velocity is 

non-zero at the interface, while the tangential stress vanishes there. Assuming that 
when h is finite w is still non-zero at the interface, continuity of axial velocity requires 
a core flow with velocities 

I q  = O(w) = 0 (3.9) 

and associated stresses of order 

(3.10) 

Because the radial component of the film velocity is at most O((h/a) w) the radial 
component of U must vanish (at leading order) at the interface, but both the 
tangential and normal stress components in the core will in general be non-zero there 
and will be given in order of magnitude by (3.10). Hence, provided that h(h/a)2  4 1 ,  
pressure variations in the core are small compared with those in the film. The non-zero 
core tangential stress at 8(t) drives a flow in the film with axial velocity O(h(h/a) w) .  
And from the normal-stress jump condition we see that core pressure variations 
require a pressure perturbation in the film of G ( h ( h / ~ ) ~  y / a ) ,  which sets up an axial 
velocity of O(h(h/a)z w). Both these flows are small compared with w if h(h /a )  < 1, 
giving (3.8). 

3.2. Formal analysis when h (h /a )  < 1 

The arguments given above can be made more formal by expressing them in the 
language of perturbation theory. Introducing the non-dimensional undisturbed film 
thickness 

E = -  (3.11) 

we examine (2.1)-(2.14) in the limit E 6 1 ,  EA 4 1, h(z,t)/sa and aa/az = O(1). 
Prompted by the estimates of 53.1, we introduce the following variables, denoting 
non-dimensional quantities with an asterisk. I n  the film we take independent 
variables 

a-b 
a 

(3.12) 
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so that from (2.1) the interface may be described by 

h(z, t ,  - H (z 
y*=-- * *,t*), m 

with H* = O(1). The instantaneous velocity and pressure fields are written as 

In the core we write x = ax*, 

u = E3Y U*(x*) 
P 

Y and P = EahYP*(x*), I: = s3h-Z*(x*). a 
U 

Substituting (3.12)-(3.15) in (2.4) and (2.5), we obtain 

w, - uy = - EU + 0 ( € 2 ) ,  

pt-wyy = -€wy+O(E2), 

p ,  = -2uy,+0(~3), 
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(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

dropping asterisks because all quantities are now non-dimensional. The leading 
corrections in (3.19) and (3.20) come from the expansion of l /r factors in V as 
1 + ~y + O ( 8 ) .  In physical terms, the film geometry appears two-dimensional rather 
than axisymmetric. In the core we obtain 

v*u= 0, v2u= VP. (3.22) 

No slip at the pipe wall requires 

w(0,z )  = u(0,z) = 0, (3.23) 

and continuity of both velocity components at S( t )  requires 

W(~-EH(Z,~),Z)-W(H(Z,~),Z) = 0, U ( ~ - E H ( Z , ~ ) , Z )  = E U ( H ( Z , ~ ) , Z ) .  (3.24) 

Assuming that U is sufficiently regular that it can be expanded about r = 1, we may 
transfer the core velocity boundary values there to obtain 

W(1,z)-w(H(z,t) ,z)  = O ( € ) ,  U(1,z) = O(E). (3.25) 

To form the stress boundary conditions we need the normal and tangent vectors on 

n = P+EH,L,  t = -€H,P+L. (3.26) 
S(t) : 

Continuity of tangential stress requires 

€ 2 ( (  1 -E2HE) ( - wy + E%,) + 2s2H2(w, + u, )) 

= ~ ~ h ( ( l - s ~ H ; ) ( U , +  Wr)+2eH2(W,-Ur)) at S(t) ,  (3.27) 
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from which we obtain, again transferring boundary conditions, 

w,(H, Z) = -€A( U, + Wr)cl, ,) + 0(s2, €'A). 

The normal-stress boundary condition becomes 

~ ~ h ( - ~ l n 1 ~ ~ + 2 ( U ~ + s H , ( U , +  Wr)+sz@ W,)) 

(3.28) 

- I ~ I ~ + E I ~ J Z ~ -  ( - 2 2 ~ 3 ~ ~ + 2 ~ 5 ~ ~ ( U , - ~ ~ ) + 2 ~ 5 ~ ~ w , )  

= -lnI2 ((1 +e2q)-4(1  -eH)-l+e(l + s 2 H ~ ) - ~ H z z )  at S( t ) ,  (3.29) 

(3.30) 

The set of equations and boundary conditions above suggest that we pose 

(3.31) 

from which we obtain 

p ( H ( z ,  t ) ,  Z) = - ( H +  H,,)+ O(S', €'A).  

asymptotic expansions for the dependent variables of the form 

1c. - $0 + € $ l o  + EA$Ol? 

although only the zeroth-order terms will be considered here. From (3.19)-(3.22) we 

(3.32) 
then obtain 

woz - uoy = 0, 

Poz--oWyy = 0, (3.33) 

Po, = 0, 

Q. Uo = 0, VP, = VzUo, 

subject, using (3.23), (3.25), (3.28) and (3.30), to 

(3.34) 

(3.35) 

and po(H(z,  t ) ,  2) = -H-H,z .  

Po = po(4 = -H-Hzz ,  

wo = iPO,(Y/"--HY), 

The flow in the film is then given to leading order by 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

and expansion and approximation in (2.18) yields 

Qo = - 4 p ~ o z .  (3.43) 

Finally from (2.17), (3.39) and (3.43) we obtain the following evolution equation for 
interface disturbances : 

Ht = - + ( ~ ( H z z z + W ) z .  (3.44) 

There is no need to solve for the core flow, although it can be found if desired, for 
example by making a Fourier decomposition of wo(H(z,  t), z )  and using the general 
solution of Happel & Brenner (1965, p. 77). The derivation of (3.44) is independent 
of the detailed mechanics of the core region, proving the assertion of $2.3 that for 
E and sh sufficiently small the dynamics of the film region control the evolution of 
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interface disturbances while the core responds passively. This is reflected in (2.23) 
and the leftmost part of the growth-rate curves of figure 2, where we see that the 
growth rate of small disturbances is independent of h and so of the core dynamics. 

4. Solution of interface evolution equation 

There is little that can be done analytically with (3.44). Putting H = 1 
181 < 1 and linearizing yields 

4.1. Analytical investigations 

with 

(4.1) a = $c2( 1 - k2), 
from which (2.23) can be recovered when dimensional and scaling factors are replaced. 

Steady states satisfy 
@(H,,, + H , )  = 3Q0, (4.2) 

where Qo is the film volume flux introduced at (3.43) and is constant. Acceptable 
solutions must have H 2 0 everywhere. If Q, =I= 0 then H > 0, for otherwise a volume 
source or sink would be required a t  the zero of H .  Suppose now that H is bounded 
above also so that M > H ( z )  > m > 0. We can without loss of generality take Qo > 0. 
Then 

- - - > - ( H , , + H ) > - - 0 ,  3Q0 d 3Q0 
m3 dz M3 

which we may integrate to give 

where C, and C,  are constants. For large lzl the upper and lower bounds on H,, grow 
linearly, and integrating twice more we find that H is bounded above and below by 
functions that grow like z3. This is incompatible with the assumption that His finite 
for all z. We do not consider these unbounded solutions with Q, 4 0 further because 
they do not seem suitable to describe an infinite thread in a stationary pipe with no 
applied body forces. 

Away from any zeros of H ,  steady states with Q, = 0 take the form 

H = A+Bcos(z+6), (4.3) 

with A,  B and 8 constant. For A > IB( > 0 this is the neutrally stable mode of linear 
stability theory, which can also be interpreted as the small-amplitude limit of the 
family of unduloids which are the axially symmetric constant-pressure surfaces of 
finite amplitude. Everett & Haynes (1972) in their discussion of capillary condensation 
have shown by thermodynamic arguments that such menisci are stable. 

The possibility of H having a zero remains, and a power-series solution shows 
that near such a singular point of (4.2) H - v(z-z,)P, with v constant and p = 0, 1 
or 2. This is compatible with (4.3) provided that IBI 2 1.41; p = 2 corresponds to 
(B( = A > 0, p = 1 to IBI > IAI, and p = 0 to A = B = 0. 

Suppose now we look for steady solutions of (3.44) that  are not 2n-periodic because, 
for example, some incommensurate external lengthscale has been imposed. As it 
stands (4.3) is not then a possible solution, but there seems to  be no reason why H 
should not be piecewise of the form (4.3) with IBI 2 IAI, these sections being separated 
by regions where H E  0. In  $4.2 we shall see that numerical solutions of (3.44) 
approach such a form at large times, and in $4.3 we shall give an asymptotic solution 
of (3.44) which indicates that an infinite time is required for H to become zero 
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anywhere. Although the piecewise-zero solutions discussed above are not attained in 
any finite time, a solution of (3.44) can approach them arbitrarily closely as t+a. 

4.2. Numerical investigations 

Before integrating (3.44) numerically we must supplement it with some boundary 
conditions, the most convenient choice being to take H periodic with period L .  
Because of the fixed and finite axial lengthscale of the steady solution (4.3), we expect 
that provided L 9 2rc the evolution towards such shapes will not be too strongly 
dependent on L. This assumption must be checked by examining various values of 
L,  which is, of course, an artificially imposed lengthscale. 

Computations were in fact performed with the more restrictive but also more 
economical set of boundary conditions 

corresponding to H even with period L and reflectionally symmetric about z = +L. 
It is easily seen from (3.44) that a disturbance initially satisfying (4.4) does so at all 
later times. 

Equation (3.44) was solved numerically by replacing the spatial derivatives with 
finite differences, generating a system of coupled ordinary differential equations for 
the time evolution of H a t  set of mesh points. This procedure is sometimes known 
as the method of lines. The resulting ODE set is stiff and it is necessary to employ 
an implicit time-stepping method to solve it. Gear's method, as implemented in the 
Numerical Algorithms Group (NAG) subroutine library, was chosen and proved to 
very effective. A discussion of the numerical difficulties of stiff systems and methods 
for treating them is given in Hall & Watt (1976, chap. 11). 

Equation (3.44) was integrated numerically for a variety of initial conditions and 
various values of L. Computer-time restrictions a t  Cambridge limited the size of 
system that could be solved to a maximum of 96 spatial points, and the limited spatial 
resolution then forced L < 6 ~ .  24- and 48-point programs were also run and gave 
similar results. Subsequently at SDR, on the suggestion of areferee, some computations 
with 400 spacial points were made, allowing values of L as large as 40x to be 
investigated. For small and moderate times ( t  < O(300)) the same general behaviour 
was seen for small and large L. However, in their very-long-time behaviour the 
solutions for L > O(10n) appeared to be less strongly constrained than those for 
smaller values of L. We discuss this observation further in 94.3. 

For all initial conditions and all values of L the following behaviour was seen. 
Disturbances stable according to linear theory decayed, even for finite initial 
amplitude. With L > 2x, linearly unstable disturbances grew and reached a quasi- 
steady state consisting of a number of lobes of the form (4.3) separated by short 
adjustment regions where H was small. The same general form was seen for all initial 
conditions. It was not possible to follow this quasi-steady state to a final equilibrium 
because of the very slow adjustments taking place and the numerical difficulty of 
resolving the short axial lengthscales (in particular the large values of H,,,) which 
developed in the adjustment regions where the interface was approaching the wall. 
In  $4.3 an approximate analytical treatment of this final stage of adjustment will 
be given. 

Most runs were made with initial conditions of the form 

2xz 
L 

H(z,O) = 1+/3cos---, (4.5) 
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although starting from H = 1 + (small random noise) gave qualitatively similar 
results at large times. For unstable disturbances L > 27t, as the perturbation grows 
flattening of the interface takes place where it is approaching the wall. Because the 
resistance to flow increases very rapidly ( -  H3) as H decreases and the driving 
pressure gradient is small where the interface is almost flat, significant fluid motion 
occurs only near the ends of the flattening region where the interface is curving away 
from the wall. Fluid in the rest of the flattened region is almost stationary. The 
expulsion of fluid from its ends causes the flattened region to lengthen, as can be seen 
in figure 3(a). In  the region where expelled fluid collects, H is large, so resistance 
to flow is small and adjustments can occur rapidly compared with the timescale for 
expulsion of fluid from the flattening zone. Any departures of the interface shape from 
a constant-pressure form given by (4.3) relax quickly. The region between this lobe 
and the flattened part of the film continues to thin, effectively isolating the two zones. 
Adjustments in the flattened zone then take place, duplicating those described above, 
leading to the break-up of the film into a sequence of constant-pressure lobes 
separated by short regions where the z-derivative of interface curvature is large and 
a significant pressure adjustment takes place. Figure 3 (b) shows this secondary-lobe 
for ma tion. 

Apart from the formation of a moderately large lobe at  z = 0 there is little relation 
between lobe size and initial conditions. In particular, there is no tendency for all 
the film fluid in [0, L] to be gathered up into a single lobe. A succession of large and 
small lobes are formed. The large ones approach the wall almost tangentially 
(IBI = -A  in (4.3)) while the small lobes have finite gradient there and seem to be 
draining into their larger neighbours. Figures 4 (a ,  b )  illustrate these quasi-steady 
states. This drainage process can be understood from (3.39) and (4.3). Large lobes 
with axial length > 71, and so A > 0 in (4.3), have negative pressure, while those with 
length < R, and so A < 0, are at  a positive pressure. There will thus be a flux of fluid 
from small to large, and if the gap joining them does not thin too rapidly this will 
lead to the complete drainage of the small lobe. Alternatively, if the gap region thins 
sufficiently quickly, the small lobe does not drain completely and both large and small 
lobes persist for all time. We now examine (3.44) in the gap region and construct a 
solution valid at large times which predicts complete drainage of the small lobe. 

4.3. Long-time behaviour of a draining lobe 
This section is based on Jones & Wilson’s (1978) analysis of the draining film 
beneath a droplet settling towards a fluid interface. Wu & Weinbaum (1982) have 
made use of similar ideas to discuss the long-time drainage of the fluid lobe trapped 
against a wall by a flexible cell. Here, once the film has developed into a number of 
almost independent lobes, the timescales for adjustment of different parts of the 
interface become widely separated. Certain regions can then be treated as quasi-steady , 
and the PDE (3.44) replaced by an ODE with known solutions. 

We work with the scaled equation (3.44) so that the basic film thickness is O(1). 
Consider now the narrow gap region seen in the numerical solutions joining two lobes, 
and let its height be O(e)  + 1 (i.e. H = O(E)). The change in curvature across this 
region is observed from the numerical work to be O ( l ) ,  and so its axial lengthscale 
must be O ( E ~ ) .  

From (3.44) we estimate the timescale for relaxation of an 0(1) perturbation to 
H in the large filling lobes to be O ( l ) ,  so for large times H will there have the 
constant-pressure form (4.3). Anticipating a later conclusion, the draining lobe has 
height O(d) and length O(1).  Its relaxation time is then O(E-9). In the gap linking 
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FI~URE~(U, b). Initial stages of adjustment for (a) L = 2 h ,  the fastest-growing mode oflinear theory, 
t = 0, 6, 18, 30, 42, 54; and (b) L = 6x, t = 0, 6, 18, 30. 60. The initial disturbances are given by 
(4.5) with B = 0.5. 
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FIGURE 4(a, 6). Quasi-steady long-time behaviour (a) L = 2&, (6) L = 0 x ;  initial disturbances are 
dotted. The pressure within ertch of the lobes is almost constant ; the small lobes are slowly draining 
into their larger neighbours. 

two lobes, perturbations with height comparable to the gap thickness O(2) and 
length O(d)  relax in time O(a-l). Finally the timescale for changes due to volume 
exchange between the lobes must be estimated. Equation (3.44) can be written as 
Ht = -Qz,  so the rate of change of volume of a lobe lying between z- and z+ is 

(4.6) 
dV 
dt 
- = -27c(Q(z+)-Q(z-)). 

Q is given by (3.43) and is O(& in the gap region. For a lobe of height O(d)  (4.6) then 
yields the drainage time as O(E-”). 

Adjustments due to drainage take place much more slowly than the relaxation of 
disturbances in the lobes or gap. So, in modelling the drainage process, we may take 
the lobe and gap interface shapes to be steady. This means that the lobes will have 
the form (4.3)) and, prompted by the observations of $4.2, we take the draining lobe 

(4.7 1 
as 

H =  &A+Bcosz) ( - 2 ,  < z < zo) ,  

where H(-z,) = H(z,) = 0 and A ,  B = 0(1), and the larger growing one as 

H = C(l-cos(Z-z~)) (0 < z-z0 < 2 ~ ) )  (4.8) 

with C = O(1). Integrating (4.10) from f = -3 to S with % 1 we obtain 

This last expression is non-zero when q -+ 0 because h is one-signed. Suppose now that 
both lobes tend linearly to zero at z,,. Matching of lobes and gap requires that h varies 
linearly with 6 for large 161. However, then [h&= = 0, a contradiction unless q = 0. 
It is not possible for a pair of lobes, one draining into the other, both to have finite 
slope as they approach the gap region. At  least one lobe must have a quadratic zero 
at  z,, but the author has not been able to prove that both lobes cannot tend 
quadratically to zero. However, except in the special case of equal lobes such 
behaviour was not seen in the numerical solutions. 

This observation has important consequences for the long-time behaviour of (3.44). 
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Any lobe of the form (4.3) tending quadratically to zero has axial length 2 x ,  
independent of the magnitude of its volume or pressure. Further, the greatest 
separation between neighbouring lobes of that form is 2 x ,  at least while the region 
separating them is piecewise-described by (4.7) and (4.10). This follows because two 
lobes with quadratic zeros must be separated by one or more lobes which tend linearly 
to zero, the maximum length of each of which is 2 ~ .  But we have just shown that 
it is impossible for two lobes with linear zeros to be joined by a gap region which 
satisfies (4.10). Hence there is at most a single lobe with linear zeros joining each pair 
of lobes with quadratic zeros and so their spacing cannot be more than 2 ~ .  For very 
large times and large values of L there is some numerical evidence that the solution 
structure embodied in (4.7), (4.8) and (4.10) is no longer valid. However, the 
arguments given above remain true a t  moderately large times, and it seems 
reasonable to expect that the structures which develop then give some clue to the 
form of the long-time solutions. 

Introducing scaled variables 

to describe the gap region, we find from (3.44) that steady shapes h(6) satisfy 

(4.10) 

q is a constant and 0(1) and the volume flux through the gap is 

Q(2o)  = (4.1 1) 

For simplicity we consider only periodic sets of lobes so that &( -2,) = -Q(zo).  
Equation (4.10) must be supplemented with boundary conditions describing the 

matching of the gap and lobe region interfaces. From (4.8) we have 

C 
2 

hW-6' ~ + c o .  

Turning now to (4.7), we have 

(4.12) 

H ( z )  - - G ~ ~ ( Z - Z , )  when - 1  Q z-zo Q 0, (4.13) 

where 
d 
dz 

a = - -((A+Bcos(z)),,,o = O(1). (4.14) 

Rewriting (4.13) in terms of h and 6, we obtain 

h N - a 6  as E+-m,  (4.15) 

justifying the earlier assertion that H = O(d) in the draining lobe. (4.10), (4.12) and 
(4.15) can be put into universal form by writing 

(4.16) 

in which case we have 

A Y-X2 as X-tm, Y - - X  as X+-CO. (4.17) 

This nonlinear eigenvalue problem can be solved numerically using a shooting 
method, giving A = 0.60(5), as can also be deduced from the computations of Jones 
& Wilson (1979, Appendix B). Figure 5 shows the computed gap-shape function Y ( X ) .  

yxxx = y3 7 
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FIGURE 5. Universal gap shape function Y ( X ) .  

We can now form an  equation for the rate of change of volume of the draining lobe. 

V = 4x&( 1 - z0 cot z0) a, (4.18) 

A straightforward integration of (4.7) gives 

and then rewriting (4.6) we obtain 

d V  411 
dt 3c 
- = - - (4x(l-zocotzo))-~v~ = -KV5 (4.19) 

C and zo are 0(1) and change by a t  most O(&) as the small lobe drains, so we take 
both equal to  their values a t  t = 0. Equation (4.19) can then be integrated to give 

V(t) = V(0) (1 + 4 V(0)4Kt)-f .  (4.20) 

Complete drainage of the small lobe occurs, although it  takes an infinitely long time. 
The long-time solution structure described above was observed in the numerical 

results for values of L 6 0(8z), although only in the 400-point computations was the 
spacial resolution sufficient that the t-f decay of the small-lobe volume could be seen. 
For larger values of L,  although an initial disturbance breaks up after sufficient time 
into large lobes of length 2x separated by regions of length < 2x as described above, 
after very long times these separating regions no longer seem to be of the form (4.7). 
Rather, they consist of a small lobe of that  form together with a region where H is 
small and approximately uniform. The complete length of each of these regions is 
close to 2x, but in some cases somewhat greater. This behaviour is associated with 
translation of the large lobes in the z-direction, which is not possible in the strongly 
constrained small-L solutions. There seems to  be a tendency for a large lobe to  move 
towards its neighbour with the more negative internal pressure. However, for as long 
as the numerical integrations were pursued the small lobes drained into their larger 
neighbours and the large lobes remained separate, their spacing never becoming much 
greater than 2x. 

More accurate numerical work or an extension of the analysis given above are 
needed to explain this very-long-time behaviour. However, in a real system, as the 
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film thins, the various additional physical effects discussed in $5.2 will come into play, 
invalidating this simple model long before the subtle long-time behaviour noted above 
occurs. 

5. Discussion 
5.1. Summary 

When the effects of walls are negligible, fluid threads break up under surface tension 
into a number of spherical droplets. When there are confining walls close by, the 
interface is still unstable, although now in the nonlinear development the thread 
remains connected and it is the outer film which breaks up into a number of isolated 
lobes. 

This instability and the final steady state can be successfully analysed using a 
thin-film approximation. While the thickness of the lobes formed cannot be predicted 
without full knowledge of the initial conditions, their axial extent is determined and 
is 2xa. This lengthscale appears because the lobes must be axially symmetrical 
constant-pressure surfaces. It is geometrical rather than dynamical in origin, but has 
the kinematical consequence that fluid is transported only a finite distance along the 
film. Thermodynamic analyses of thread stability leading to the requirement of 
surface-area minimization can be misleading unless the correct constraints are 
applied. We must demand not only that total fluid volume is conserved but also that 
film fluid is not transported over distances much greater than 2xa. A shape which 
gives a global area minimization may not be accessible in a continuous time evolution 
from a given initial state, and it is only by considering dynamical processes that 
accessibility can be determined. Capillary condensation (Everett & Haynes 1972) 
used as a model for the equilibrium distribution of phases in a porous medium may 
be criticized on the same grounds. The constraints on fluid rearrangement imposed 
by the mechanics of incompressible viscous flow with moving interfaces are different 
from, and more restrictive (even in non-axisymmetric geometries) than, those imposed 
by transport through successive evaporation and condensation. 

In the process discussed here, fluid is gathered up into each lobe from within an 
axial length of about 4na (each lobe has length 2na and the greatest distance between 
lobes is also 2xa). As a result, the film thickness can only be increased locally by a 
factor of about 4. For very thin outer films there is no possibility of this leading to 
snap-off of the core thread. 

Over a wide range of viscosity ratios, the evolution of disturbances is controlled 
by the balance of surface-tension driving forces and viscous resistance in the outer 
fluid. The core fluid responds passively to the motion of the interface. Despite the c3 
factor in (3.5), these adjustments do not take place so slowly as to be unobservable. 
If the tube radius is 100 pm, typical of rock pores and some laboratory experiments, 
then for c = 0(10-2) and y , p  typical of water41  systems (3.5) gives Tfilm = O ( l 0  s), 
and, for larger values of E, Tfilm decreases rapidly. For all except the slowest processes, 
time-dependent effects may be important. 

5.2.  Neglected physical effects 
As the outer film thins, a number of neglected physical and physicochemical effects 
will become important. Forces due to electric double layers and van der Waals 
interactions will be significant when the film thickness is less than O(O.l pm). In the 
very late stages of adjustment, attractive forces will assist the film break-up (Williams 



An annular $film of fluid within a pipe 381 

& Davis 1982), whereas a net repulsion will prevent the final complete disconnection 
of adjacent lobes (Chen & Slattery 1982). In either case the initial development of 
the instability, when the film is not too thin, will be unaffected. 

Because surface tension alone can lead to the break-up of the film, we must be 
careful in interpreting observations of fluid configurations in terms of inhomogeneities 
in the wall wetting properties. Even on a chemically homogeneous pipe wall, a 
non-uniform film fluid distribution will develop. 

Surfactants are undoubtedly present in real oil-water-rock systems, and non- 
uniformities in their concentration will lead to variations in surface tension along the 
interface. These will set up flows which may significantly change the behaviour found 
above. If we assume that the surfactant is soluble in the core fluid, and that the rate 
of diffusion from the bulk to the interface controls surfactant adsorption there, some 
measure of concentration non-uniformities is given by the PBclet number P = a1 q / D ,  
where D is the diffusivity of a surfactant molecule in the bulk core fluid. If P is much 
greater than 1, we expect significant concentration gradients to develop along the 
interface because non-uniform advection of surfactant in the interface is stronger than 
the equilibrating effect of diffusion from the bulk. For the parameter values discussed 
above,D = O(lO-s em2 s-l)typicalofasmallmolecule,ands = 0(10-2), P = O(l0)and 
in practice can be larger because the surfactant molecules may be limited to two- 
dimensional diffusion in the interface. Surface-tension non-uniformities are likely to 
be important, and the calculations described here must be reworked to discover their 
effects. 

The flow channels (‘pores and throats’) in a real porous medium bear little 
resemblance to the uniform capillaries discussed here. They are neither straight, 
axisymmetric nor of uniform radius, and it is natural to ask whether the results of 
this detailed analysis are of any value in predicting interface behaviour in such 
geometries. Provided the pores and throats are such that there is a thin outer film 
separating the core from the pipe wall, the methods described here can be extended 
to study thread snap-off in constricted axisymmetric pipes (Hammond 1982, and a 
forthcoming paper), and to examine the effects of O ( m )  wall roughness and non- 
axisymmetry. And, even when a thin-film analysis is not strictly appropriate, 
qualitative ideas based on these studies may be useful. 

The strong H3 nonlinearity in the volume-flux expression (3.43) suggests that even 
small departures from axisymmetry will lead to significant changes in flow rate and 
the emergence of preferential flow paths where the film is thickest. When the 
surrounding pipe is strongly non-axisymmetric, so that there are O(a) variations in 
the thickness of the outer fluid layer, we expect most of the fluid rewrangement to 
take place through these wide regions. Transport in any thin parts of the layer will 
be slow, because of the high resistance to flow, and the evolution of the interface 
initially at  least will be controlled by the dynamics of the core and the widest parts 
of the outer layer. As in unbounded fluid, there is a strong possibility of snap-off, 
although the constraining effects of the walls may prevent the break-up of the thread 
into spheres. Flows in the thin parts of the outer layer may still control the long-time 
adjustment. 

The analysis given above shows that axisymmetric capillaries are poor models from 
which to deduce the equilibrium phase distributions within single pores in a porous 
medium. In axisymmetric capillaries, after an initial adjustment, the film breaks up 
into disconnected lobes and no further outer-fluid transport is possible. This 
localization property is special to axisymmetric geometries. There is no reason to 
expect similar behaviour in the more realistic non-axisymmetric case. Even after 

13-2 
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adjustment, connected surface films will then remain, along which the outer fluid can 
be transported over large distances. 

5.3. Break-up of threads surrounded by moderately thin Jilms 

Goldsmith & Mason (1963) report the break-up of very long bubbles in circular 
capillary tubes. We have already shown that such behaviour cannot occur if the outer 
fluid film is very thin, and it is of interest to attempt to predict at what thickness 
snap-off is possible. This cannot be done within a thin-film approximation of course, 
but we can give a qualitative argument using some of the ideas developed above. 

If the inner thread is to snap, sufficient fluid must be collected together to form 
a lenticular bridge across the pipe. The interfaces of such a bridge are opposing 
hemispherical caps of radius a and the least volume that can be enclosed between 
them is $nu3. For thin films the total amount of fluid gathered up is approximately 
(circumference of pipe) x (thickness of film) x (length of film from which fluid is 
collected) = O(87c2ea3). Snap-off is impossible if this is less than 3 a 3 ,  so when 
E < I /  127t w 0.03 the core thread must remain connected. If E is bigger than this value, 
but still sufficiently small for thin-film theory to be valid, we expect the initial stages 
of adjustment to be much as described above. But, as Everett & Haynes (1972) have 
shown, when the lobe volume becomes greater than a certain value, its surface area 
is bigger than that of a lens bridging the pipe. On thermodynamic grounds we then 
expect the interface to tend towards that shape, although the geometrical 
approximations made prevent the thin-film theory given here from showing such 
behaviour. 

Any droplet formed in thread break-up must have surface area less than part of 
the original thread with the same volume. Together with the restriction for 
moderately thin films that outer fluid cannot be transported more than a distance 
of about 2na, this gives another bound on E for the occurrence of snap-off. Taking 
the very crudest model of a droplet after snap-off as a cylindrical middle section of 
length L and radius a with hemispherical endcaps also of radius a (as in the previous 
paragraph), elementary calculations show that surface area reduction requires 
L / a  > 2136-2. But the total droplet length is bounded above by the distance 
between neighbouring lobes which is constrained by the film-fluid readjustment 
processes to be less than 47ta. This fixes L + 2a < 4xa, and hence E > 1/6n if snap-off 
is to occur. While it would be unwise to put too much faith in the numerical values 
of these estimates, they are based on a realistic model of the underlying dynamics 
which indicates how volume conservation constraints and the interaction be- 
tween flow and variable geometry prevents threads surrounded by thin films from 
breaking up. 

Most of the work described here was done while the author was a research student 
in DAMTP, Cambridge University. He is grateful to Dr E. J. Hinch for many 
suggestions and shared insights, to the SERC for financial support and to Professor 
J. R. A. Pearson for his criticism of an earlier version of this paper. 

Appendix 
When h = O(h/a)-' the asymptotic structure described in 53.2 breaks down 

because then the perturbation flow in the film driven by the core tangential stress 
a t  the interface is as large as the basic film flow. Order-of-magnitude arguments 
following the pattern of 53.1 suggest that the flow field takes the following forms as 
A increases. 
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When (h/a)-' 4 h < (h/a)+ the film axial and radial velocity components and 
pressure gradient are estimated as before by (3.6) and (3.7). However, now w = 0 a t  
the interface (at leading order) and the major response in the core to this film flow 
is driven by the tangential stress exerted by the film at the interface. The core velocity 
then has IUI = O(A-1(h/a)2y/p) with associated stresses 1721 = O((h/a)2y/a). The 
radial component U of core velocity vanishes a t  the interface, but C,, and W are 
non-zero there. They set up small corrections in the film with axial velocities 
O((h/a) w) and O(A-'(h/a)-'w) respectively. The non-zero film radial velocity com- 
ponent drives a correction of size O(A(h/a)2 1 Ul) in the core which is as large as the basic 
core flow when h = O(h/a)-2, signalling the breakdown of this asymptotic structure. 

When (h/a)-2 4 h 4 ( h / ~ ) - ~  the following picture emerges. Film velocities and 
pressures are still estimated by (3.6) and (3.7) and w = 0 a t  the interface. The major 
response in the core is now driven by the film radial velocity component u, leading 
to  a core flow with 1 UJ = O ( ( ~ / U ) ~  y / p )  and 1x1 = O(h(h/a)* y/a).  The core tangential 
stress C,, vanishes a t  the interface. The core axial velocity drives an  O((h/a) w) 
perturbation flow in the film, and the film tangential stress sets up a small correction 
in the core with velocities O(A-1(h/a)-21UI). Core normal stresses set up a pressure 
perturbation in the film which drives an O ( A ( ~ / U ) ~  w) correction flow there. Notice that 
when A ( ~ / u ) ~  = O(1) this is as large as the basic film flow, and core pressures are as 
large as the film-pressure fluctuations, which, up to this value of A, have dominated 
the normal-stress balance and driven the flow. 

Finally, when A B ( h / ~ ) - ~  the dynamics of the core region control the flow. Core- 
pressure variations are O((h/a) y / a )  with associated velocities 1 UI = O(A-l(h/a) y /p )  
and stresses 1x1 = O((h/a)y/a). The core tangential stress Cnt vanishes a t  the 
interface. The core radial velocity component Uis non-zero there and drives the major 
response in the film, setting up a flow with u = O(A-l(h/a) y/p) ,  w = O(A-'y/p) with 
w = 0 at the interface and pz = O(h-1(h/a)-2y/a2). The tangential and normal 
components of stress in the film drive perturbations in the core with velocities 
O(A-1(h/a)-2 IU() andO(A-2(h/a)-2 1 Ul) respectively. Ash -f co all these perturbations 
remain small compared with the main flows. Recalling the results of $3.1, we see that 
when h/a 4 1 a complete set of four distinct asymptotic structures has been found 
as h varies. 

Repeating the formal analysis of $3.2 for 

(h/a)-l 4 A e ( h / ~ ) - ~  or 

we find that lubrication theory may be used to describe the film flow which can again 
be found without calculating the complete core flow. I n  both cases the film axial 
velocity wo = bOz(y2-  Hy), with p ,  given by (3.40). The interface evolution equation 
is then the same as (3.44), but with the numerical factor of + replaced by A. The main 
difference between these two viscosity-ratio regimes is in the way in which film and 
core interact. As a consequence the core flows differ, but the film flows, and hence 
the behaviour of the interface, are the same in both cases. The dynamics of the film 
region control the flow and are, within the lubrication approximation, independent 
of the details of the core flow. This is reflected in the results of the linearized sta- 
bility analysis, where no distinction appears between (h/a)-' 4 A 4 (h/a)-2 and 
(h/a)-2 + A < ( h / ~ ) - ~ ,  (2.24) covering both regimes. I n  figure 2 we see a single 
extended region where the growth rate is independent of h for each value of h/a and 
1 < h ( h / a )  < (h/a)-2. 

For very large core viscosities, A + (h/a)-3, the timescale for interface adjustments 
is given by T,,,, = O(Aap/y), using the above velocity estimates. This behaviour can 

(h/a)-2 4 h 4 ( h / ~ ) - ~ ,  
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be seen in figure 2, where for the largest values of A all the maximum growth rate 
curves fall away with slope - 1. The core flow alone determines the motion of the 
interface and the methods of linearized analysis can be used to trace its evolution 
until it has come sufficiently close to the wall for film pressures to be significant. 
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